small DOS-box com-
puter doesn't leave
you marny options for
attaching external
devices such as sen-
sors. Basically, you
can use the serial ports or the
printer ports, The serial ports wark
best for terminal-type equipment
such as modems or RF links, but
the printer ports can really shine
when you need 1o hook up several
medium-speed 'O devices.

In this article, Il show you how
you can add up to eight devices to
a single printer port, using little
more than a ribbon cable and
some C software.

The SPI

Traditionally, hobbyists have
used a printer port to drive ICs
such as an eight-bit latch. This
simple hookup lets you control
eight latch output lines just by writ-

even a few input lines, you end up
with a much more complex design.
The older paraliel ports only had a
few input lines, and even the
newer Expanded Parallel Port
(EPP} units aren't all that easy to
usa if you need a lot of input lines,

This KO limitation hasn't
stopped hobbyists from develaping
some clever designs, of course.
One of the better projects that I've
seen wired into a parallel port was
a device that could read and writa
GameBoy game cartridges. | dis-
cussed this project in detail in a
past Nuts & Wolts Amateur
Robotics eclumn; you can lock
through your stack of back issues,
or do a web search for GameBoy
and ReadPlus (the name of the
reader).

But to get the most mileage
out of your parallel port, consider
using it to drive a synchronous ser-
ial bus such as Motorola's Serial
Peripheral Interface, or SPL

five if you include +5 VDC to drive
the device. More importantly, each
SPI peripheral needs only one
dedicated printer output line. This
means you can add up to eight
SPI devices to a printer port.

Since the SPI bus is bidiree-
fional, you can use any mix of
input, output, or bidirectional
devices you need. This means you
wouldn't have any problem driving,
say, 32 channels of A/D, a couple
of elght-bit latches, and a pair of
frequency synthesizers off of a sin-
gle parallel port.

The SFI achieves this high
capability because of the way it
distributes data. All devices use
the same serial input line, the
same serial output ine, and the
same serial clock line; this last sig-
nal lets two devices synchronize
bus cperations. The device con-
trolling the bus — known as the
master — uses a dedicated line to
each other device as a selact lina;

SPland the Printer

ing a value to the parallel port. But
if you need more VO capability,
such as more latch output lines or

Port

Hooking up an SPI device,
such as a latch, requires only
three lines plus ground; a total of

DB-25 male (front view)

1
o o © ©

o o 0 o o o o

13

o o a o © o0 o o O

o o o o o

14 25
Direction Port &
Pin Signal (from PC) Bit
I *Strobe Output Control, DO
2 DO Cutput Data, DO
3 D1 Output Data, D1
4 Dz Output Darta, D2
5 D3 Output Data, D3
6 D4 Output Drata, D4
T D5 Output Data, D5
-] D& Output Data, D6
9 D7 Output Data, D7
10 *ACK - Input Status, Do
11 *Busy Input Status, D7
12 PaperEmpty Input Status, D5
13 Select Input Status, D4
14 * AutoFeed QOutput Control, D1
15 *Ermror Input Status, D3
16 InitPrinter Output Control, D2
17 *Selectln Output Control, D3
18-25 Ground

by Karl Lunt

bringing a selec! line low activates
the device on that line. Cnly the
selected device — known as a
slave — will listen or respond to
the host.

For example, if the master
(your PC} wanted to exchange
data with SP| device 3, it would
bring printer cutput port line 3 low,
leaving all other output lines high.
Then, your PC could freely send
commands serially over the com-
mon output line; only device 3
would process the commands.
Similarly, your PC could raceive
data from the common input line,
knowing that any data received
would have been sent only by
device 3.

The SPl exchanges data
between two devices simultane-
ously, This means that each time
the master sends a bit 1o the
selected slave device, the master
also reads a bit from the slave. The
master device must provide the
serial clock signal used by both
devices for synchronizing this data
2X|

Putting this anocther way, no

THE SIGNALS RVAILABLE

ON A PC PARALLEL PORT.

SCLK idles high
{CPOL=1}

SCLEK idles how
(CPOL=0)

TIMING DIAGRAM SHOWING THE RELA-

TIONSHIP BETWEEN CPOL and CPHA.

MASTER SENDS BINARY 1001 T0 SLAVE.

MOSI I
(CPHA=O)

MOS] i
{CPHA=)

data are exchanged unless the
master provides the necessary
clocking pulses. This means that
the master must always send
something to the slave, even if the
master just wants to read a byte of
data.

Mota that the SPI format does-
n't prevent you from sending com-
mands to more than one device at
a time, should that be necessary,

#include <o he

Finclude <oon o

Finchude <dos e

#include s b

#indsl TRUE

idefine FRLEE 0

#define TRUE Cueff

Fendt

ureigned ind dalapor

wresigned i

m gw e trohvalue;
g s ol

unsigned char datavala;

unesgned im WS

unsgned char burtier] 126

umsignad g ghdﬂl.

unsgned ﬁu MWEBFirst

unsgned addata;

ficat fdatz;

fical fuliscala;

woid Sathd0) char walal;

woid Fm&, ns}g'm‘:u vk

aSCR{unsigned char iny
char vale];

I
1
0 0

shell, though, the above
paragraphs show that lit-
fle is involved in moving
data between a host
device such as a PC and
any of several diffarent
SPl devices on a bus.
Anyone using the
Motorola microcontrollars
(MCUs), such as the
BB8hci1, likely will have
already used or read
about the SPI; it iz built

Just have the master pull all the
necessary select lines low before
sending any commands. However,
this is a fairly rare occurmence.
Generally, your software will deal
with only one active device at a
tirme,

There are some subtle timing
requirements that you have to
respect when using the SPI; refer
to the sidebar for details, In a nut-

N setumed afd value

iinaigned car phise, wekgned dhar poliy:

wekigned char ExchangeSPijursigned char vaks);

Eﬁﬂ mainfird &9, char s
umsigned K
unsigned char =
datapor = iTe;
statespon = dalaporis1;
waits =0
LMSBFrs = THUE;
fullscale = 4.096;
Flage>1) |
for {n=1; n:.ﬂ.l'g! T}

ra (7]
i~ P e
mm [} [

}

3 Selrmqo.nj.
whila (Ibhal)) [
1 printi{E

36 Ociober 1998/ Nurs & Volts Magazine

¥ o max204 AD

11§ this is an amument_
umant char

on angament char_
=

Wails = palargnbel 7 gel number of wail
b

into almost all Motorola
MCUs. Other chip makers, such as
Atmel, also sell MCUs with built-in
SPL

The printer port

I've discussed the SPI in some
detail, now il turn my attention to
the printer port. In its simplest
form, this is a mublti-wire bidirec-
ticnal port to the world; your PC

software sees this port as three
consecutive VO registers. The first
of these three registers is the data
port, a byte-wide output port that
your software can write to change
the states of eight lines. The next
higher register is the status port, a
byte-wide input port that your soft-
ware can read o sense the states
of various signals from the printer.
Finally, the control port is a byle-
wide output port that your software
can write to change the states of
various signals to the printer.
Each printer port, known io
your PG as LPFT1 through LPT4,
occupies three consecufive
addresses beginning at any of
three common /O addresses,
$3be, 5378, or $278. For example,
if your PC assigns LPT1 to VO
address $3bc, then your software
would use 53bc as the data port,
£30d as the status port, and $3be
as the coniral port, The PC's BIOS

mﬂ: i selact davica 0
i I el 0, ik, single, imamal ok
addata = ExchangeSPi), if gt meh of diata
addata <= B; ﬁxnhhmm:p
Tmhs?mam1 5@&"&%
£ {addsta = (3 i a i 5ot
alsn [
1 no, ol valld data T
I prmrumm Eih
%Prﬂ%ft i cinar ki buffar
I
imﬁmmqnwnﬂ
unsigned char m
t 50 shouid bo high...
}M[controbvalu &= Of; i *STROBE = 1 (active-iow)
1 :
i [coninotvaiug |= Cxl; N "STROBE = [{Bctve-low)
ouiporb{contmiport, controbalue];
for {rel; necweaits,) |
] controlalke];
1
}r@m&uwmwmm
urssigrnd char %
wsied char e,
B{iepha) { - HECPHA=D..
; {sn:lm]; 1 moed i set MOSI now
¥ = mporbshs pert; et vae of MISDH
Erwm_{wmmmuamn;
= mmugumm*mnt
o e LB
[e)
: _v:ip«&n(gamqnﬂ: = i get vahue of MESO
: conmoivalusl ;
for =l mewsits; 4+ |
controfvaluel; : b
Fotm A 0801 8 0B " if et “BUSY and stip othr bils

records the assignment of each
primter port to its O address in a
fable stored in RAM at address
0040:0008.

To lock at the printer assign-
ments of your PC, go to a DOS
prompt and fire up the DOS debug
program. When you get debug's
prompt, enter the command:

d 0040:0008 L8

debug will respond by printing out
the eight bytes of data stored at
that address. The first pair of bytes
gives the 0 address of LPT1, the
second pair gives the 'O address
of LPT2, etc. Note that since the
PC usas an Intel-style processor,
the YD addresses are slored LSB
first, =0 you will need to reverse
the order of the two bytes in each
address lo determing the trua 110
address.

Knowing how to use this table
means your software can look up
the /0 address associated with
any desired LPT port, even if the
BIOS or some other program
switches port assignments at
some time. This i5 important,
because to control SPl devices
uging a printer port, your software
must perfiorm low-level accesses
to the V'O registers.

Obwiously, you want your soff-
ware to bang the lines of the cor-
rect port, lest your laser printer
suddenly go wacko and start
spilling paper all over the place.

With mast of the basics out of

the way, we can start looking at the
available lines on the printer port,
1o assign these lines to the neces-
sary functions we neead 1o support
an SPI bus. Refer to the accompa-
nying table of signals available on
the printer port for details.

The maost important ling in the
SPI bus Is SCLK, which acts as
the system clock signal. We will be
bit-banging all of the SPI signals
from the PC, so we could choose
any line we want as our SCLK sig-
nal, but probably the easiest to
remember is “Strobe. This signal
appears on the printer connecior
as pin 1, and in the parallal port
registers as bit 0 of the control
port, Note the leading asterisk in
the signal name, "Stroba, This indi-
cates that this signal is active-low.

From the software viewpoint,
you have to write this bit with the
imverse of the desired signal, Thus,
to pull *Strobe low, your software
miust set bit 0 of the control port
high. Similarly, writing 2 0 to bit 0
of the control port will bring the
*Strobe output fine high. This can
take a little getting used to, but one
function will be usad for all manip-
ulations of *Strobe, =0 you only
hawve to get this concept right once,
then you can forget about it for the
rest of the program.

Mext up, we need a signal to
act as MOSI, tha master device
data output line. | chose *AutoFd,
which is bit 1 of the conirol port
and pin 14 of the printer connector,
for this function. As with “Strobe,

r
® DeseleciAll bring all chip sslecs 10 deseleciad siske

* This routing acoepts an unsigned char at indcates all
™ devices am ol selecied. Afier weiting Bus vake I e

* LPT daa porl, s soufing: Saves e value in 2 gobal

* wariahis for later usa.
k)

vold DesslaciABjunsigned char valus)
y wresignad char m
o b P
)
for (p=l; powaits: [
IM mmﬂ-ri'

r
-

taport, datavais);

TogghkSelects Ioggie one o mone chi, Stlect Enes

N or Bl walt sizes

* This nesing changes the chip seindt byle weiten o fa
" LPT dats peet. uglarm]I e paiiam hﬁnrrﬂﬂmmk

* s used o
* datinake,
"Iﬂ'l'.ﬂﬂm.

in the curmenl gichal

* Mote Bal you don'l use e routing 1o L bils on o
tham. Thes, this moutines senves 25
::m-ammm;mmum

» oft, only & lnggle

i Toglcfrad chr sk
wsignad char

MNHMS&MWMLPTMM

LS

W st the selected patiem

mm i sat it up

for (ne=ll; neowaiits; {
}

& da the wailing
datavaluel;

veid Sesormatunsigred char phass, unsigred char potarity)

ol = prlaiy;

I recand ciock i st

Data Port (1'0 address offset 0)
Owutpat only from PC

[o7 | 6 | ps | pa | o3 [b2 | oo | oo

Status Port (L0 address offset +1)
Input only to PC

[*Busy| *ack | PE | selext | *Emor | *RQ |

2]

Contral Fort (L0 address ofTset +2)

Output only from PC

] Dir }' lRQF.nhl"Se]mInl Init | 'ﬁutoFdI‘Stmhe I

discussed previously, this
is an aclive-low signal, so
you have 1o write the
inverse of the desired
value whenever your software
manipulaies this bit.

Then we have MISO, the mas-
ter device data input line. 1 chose
"Busy for this signal because the
documaeritation | was using for my
design indicated that this line was
active-high, meaning that my soff-
ware wouldn't have 1o deal with the
inversion discussed above.
Unfortunately, the documentation
was wrong; *Busy is active-low. |
only discovered this after complat-
ing the software and seeing the
inversion in my tests.

THE THREE REGISTERS OF
A PC PARALLEL PORT.

Rather than rewrile the soft-
wara and mod the hardware at this
point, | just added the imersion to
the code and left “Busy as my
MISO line. If you decide to rewrite
my software, you might swilch
lines for MISQO; PaperEmply or
Select might make befter choices.
For now, my code uses “Busy,
which is bit 7 of the status port and
pin 11 of the printer conneclor.

All that remains is assigning
the SPI salect lines. This sofiware
uses output lines DO through D7
as the eight device select lines

Forcs] T 58t ek lo e stalg
: o e o I ecord CPih satieg
void SeMOSTunsigned char value)
{ waired cur m;
1 (ke i ¥ sanding a 0...
”mahml:ﬁm sa1 MOS| 1o O {actiee-low)
L&a[N nope, musiba 1...
i cocfroivalon &= Ot ¥ el MDS| = 1 [acthve-kow
DO pontrTipor, [
for {n=0; nrowaits; fie) | st i out
) outportby] 3
i
:rs&eﬁmiudmmsﬁllmwgarﬂn]
wsired char v
unsigned char
ursigred char 5 indala;
indaty =
o éqmmﬁ; }{ Wioralbisin 4 e
o a4
-wmaﬁz
:lda:a-at'l; gmhmmmﬂ
¥ i¥) indata += 1; I and the bit we st mad
o= 1; I s e ot Eryle el
]
(] : if ro, seewding L5B firsl
MME,LH SEEMEM‘J]: N clock &
Indata »a= 17 A e niirw daita right one bk
if (v} inciata += DB, ﬁ'ad:l-ahﬂmLﬂ‘wad
i withod 3= 1p N i marn out
C PROGRAM

Muts & Volts Mogerine/October 1998 37

SCHEMATIC FOR
CONNECTING A
MAX1204 A/D

CONVERTER USING
THEPC'S PARRLLEL

PORT

supported by this project. This
makes it easy 1o remember which
device goes to which connecior
pin. If you need even mora SPI
devices hooked to your port, you
can write extra code that uses the
last two controf lines, "InitPrinter
and *Selectin, to add two more
devices,

Mow it's time to gel into the
software. Refer to the accompary-
ing listing of my C program. This is
not a finished piece of software, so
I'va cut a few corners. | encourage
you 1o build on this program to
make it better for your cwn appli-
calion.

| compiled this code using
Borland C/C++, version 4.52, as a
DOS standard application using
the large memory model. The only
non-4NS| feature that I'm aware of
in this program is the use of the
outportb() fibrary function, which
writes a byte to the desired YO
port, but most compilers support a
similar function. Refer to your com-
piler's manual for details.

The program’s main() function
begins by assigning default values
o several important variablas, The
variable dataport holds the base
address of the parallel port's 'O
registers. The value written here,
0x378, serves as the VO address
of my system's LPT1. As you can
see, | have not implemented the
BIOS lookup scheme described
above. Feel free to add the lookup
vourself, if you choose. If not, at
least use a wulility such as
Microsoft's MSD 1o locata the 110
address used by your target print-
ar port, and changs the value writ-
1an to dataport accardingly.

The variable waits is vital to
the proper cperation of this pro-
gram, and deserves study. Most
SPI devices run at a top clock
speed of one to two Mbits per sec-
ond, The newer PCs, however, can
pump data out the prinfer port at
much highar rates than the SPI
devices can handle. In order to
slow the newer machines down 50

38 Ocicher 1998/ Nuis & Volts Magozine

== LFT pin 1 (=«STROEE)

= LPT pin Z=9 [DATA M}
LPET pin 14 (=aUTOFD)
LPT pin 11 (=BUSY)

the SPI devices can keep up, I'va
added a wait-state feature, waits
holds the number of wait-states 1o
insart in any SP1 bus cperation.

On my little 486 DOS-box,
which | use for data collection, this
program can only change the SPI1
SCLK ling at about 500 KHz, wall
within reach of most SPI devices.
The default value of waits, which
is 0 in this code, is good enough
for my little system. You can
change the value of waits on the
command ling by using the fwoo
option, where xxx is the number of
wait-slales you want to insert.

Adding wail-states gets a litile
tricky. You can't use a simple
counting loop, as some compilers
will optimize out such loops, and
the newer machines run too fast to
make such loops meaaningful,

To insert wait-states, my coda
simply repeats the most recent 'O
operation waits times. /0 opera-
tions are timed independently of
the PC's CPLU, s0 each wait-state
will actually occur, and will be of a
known duration.

For an example of how the
wail-states are inserted, look at
the code in ForceSCK{). It is an
instructive exercise fo hook an
oscilloscope 10 vour prinfer port's
*Strobe ling, then run this program
with different values for waits and
watch the effect of the wait-states
on the SCLK pulse length.

I've included the routine
SetFormat() so you can quickly
changs the active SPI format. You
might have devices hooked fo your
printer port that require different
SPI polarities or phases, and this
routing lets your software adjust
the system’s format before begin-
ning a transfer. 've also added
routines for controlling the eight
prinler data lines, used as SPI
davica select lines.

The function DesalactAll()
allows you to write a value to the
data port that tumns off all SPI
devices, Since your design might
use a mix of active-high and
active-low 5Pl devices,
DeselectAll(} aliows you 1o pass
a value that constitutes all
devices off. Another routine,
ToggleSelects(), lets your software
change the state of particular SPI
device salect lines. Note that you
don't specify whather the line goes

high or low, only that it changes.
Your software can blend usage of
DeselectAlll) and TopoleSelects()
1o contral the SPI devices without
having to know what stale any
device select line should be in.

Taking the bus for a SPIn

All of this scfiware doesnt
mean beans until you actually
hook up a device, You have a
bewildering asscriment of SPI
davices available 1o you. Perhaps
the most commonly used SPI
device is the 74he585 serial-

in‘parallel-out octal latch. I'va
done a couple of articles on
hooking this device to the SP|;
see some of my earlier Nuts &
Violts Amateur Robotics columns
for details on using this chip ta
drive, for example, a liquid-crys-
tal display (LCD).

But hooking up yet another
'585 seemed so boring, consid-
ering tha number of other possi-
bie choices. So | plugged into
Maxim's web site at
www.maxim-ic.com and stari-
ed looking around for cheap

ADs, After a few minutes, | set-
tled on the MAX1204, an eight-
channel 10-bit serial A/D that
nesds a single +5 VDC supply to
oparata.

Maxim has bult some nice
features into this chip. One feature
1 likg in parficular allows you to
configure it as eifher eight single-
ended analog inputs, or four differ-
enfial inputs. You can even mix and
match, should you need, say, five
single-ended and ane differential.

You can order a couple of
these devices directly from Maxim,
via their samples dask. The device
is also available from Digi-key for
about $4.50 each.

Inside the SPI

Motorola’s Serial Peripheral Interface (SP1) uses threse bus wires
and additional chip-select lines to implement 2 synchronous bus that
runs at speeds in excess of one megabit per second. Widely used in the
embedded control industry, the SPI makes a good choice for moving
high volumes of data across short distances (less than one foot) or
amang sewveral different devices. The following paragraphs describe the
varnous signals used in the SPI bus.

SCLK {or SCK) is the main clock signal for synchronizing data ransfers
belween the master davice and the selected slave device. This signal is pro-
vided by the master device, SCLK may idie either high or low. To ganerata a
clock pulse, the master device momantarily brings SCLK to the active siate,
then returns it 1o the idle state. Each such clock pulse constitutes a singla bit
time, wused to synchronize the exchangs of one data bit.

MOSI [mastler-cut-slave-in) is the SPI| owtput line from the master device.
At the correct point in each clock pulse, the master device outputs a level on
MO3] coresponding to the bit value to send 10 the slave device. MOSI is
connectad to the input lines on all slave devices on the bus. The selectad
slave device will sample the value of MOSI at the correct paint in each clock
pulse to determine the value of the data bit sent by the master devica,

MISO (master-in-slave-out] is the SPI inpat line 1o the master device,
MISO s connected ta the cutput lines of all slave devices on the bus. A1 the
coerrect point in each clock pulse, the selected slave device outputs a level en
MISD comesponding to the bit value to send to the mastar devica, The mas-
ter will sample the value of MISO at tha correct point in each clock pulss to
determing the value of the data bit sani by the slave davice.

*CS iz the chip-select line used by the mastar to select a slave device.
Generally, the master must provide a single chip-select line for every slave on
the 5P1 bus, though some bus configurations can use one chip-select line 1o
control multiple slave devices, By convention, SP| slave devices use an
activa-low chip-select line, though some SP1 devices, such as the Dallas
D51305 real-ime clock, use an active-high select line. The masier laaves all
chip-select lines in their inactive states until a data exchange is requirad, At
that time, the master drivas the proper chip-select line to its active siate,
selecting that slave device. Affer exchanging one or more bytes of data with
the slave device, the master returns that select line to ils inactive state, dese-
lecting the slave devica,

timing for data exchange on the SPI bus depends an the SCLK sig-
nal and the agreed-upon format batwesan the master and slave devices, The
two devices may use any of four different timing formats, based on the idie
state of SCLK (either high or low) and which adge of SCLK (sither leading or
traifing) marks the presance of valid data, Motoroda refers to these two crite-
ria as CPOL and CPHA, CPOL, or clock polarity, & O if SCLEK idles low or 1
SCLK idles high. CPHA, or clock phase, 1= 0 if data are valid on the leading
edge of SCLK or 1 if data are vakd on the traifing edga. Thus, an 5P| bus
that uses the format CPOL=0 and CPHA=0 relies on SCLK idling low, with
data valid whenever SCLK changes from low 1o high.

As you can see from the
accompanying schematic, the
wiring is dirt simple; you get eight
channels of A/D for little maore than
a couple of caps and a sockel. I've
added a trimpot (R1) and current-
limiting resistor (R2) 1o channeal 0
50 | can dabble a little.

Mote that the *CS line — pin
18 — connecls to only cne of the
On lines on the printer port con-
nector; if you want to use this
schematic with the scftware listed
hera, hook *CS to printer connec-
ter pin 2 (DO}, Also make sure you
hook at least one of the ground
lines on the printer connector (pins
18 through 25) 1o the ground line
in the schematic. You will also
need 1o supply & source of +5 VDC
for this MAX1204; this can be a
wall-wart or a set of ballaries with
a suitable voltage regulator.

The physical layout of this cir-
cuit is not critical; you could make
up a little printed circuit board
(PCB), or just use one of the
RadioShack exparimenter's
boards. | chose to build my circult
on one of those white plastic pro-
totyping blocks, offered by a num-
ber of mail-order vendars.

The tricky bit inwolves hooking
wires to the printer connector, |
opted to start with & 18-inch long
26-pin ribbon cable, available sur-
plus nearly anywhere for a buck or
s0; mine even had a female 26-pin
IDC connactor on one and.

| stripped back the 26th wire
fram the opposite end of the cable,
then pressed a male IDC DB-25
connector onto that end. This gave
me & ribbon ceble of suitable
length, with one end | could plug
into the LPT part of my PC and
another end that | could plug Into a
26-pin male dual-row header.

All that remained was coming
up with a dual-row header that |
could plug inte my prototyping
black. | started with a 26-pin
wirewrap haader gleaned from my
junk box, Working carefully with a
set of needle-nass pliers, | bent
each of the long 25 pins to the
proper shape. When completa, |
had widened the gap between the
two rows of long pins so the head-
er would straddie the wide channel
down the centar of my prototyping
block. When | plug the header into
the black, each pin is isolated from
the others.

Mow | can plug the 2G-pin
female connector on the end of my
risbon cable into the prototyping
bleck and complete my wiring.
Mote that such modified dual-row
headers are alse available from
several mail-order houses, if you
dont feel like taking the time to
construct your own.

With the wiring complete, | just
needed 1o add some code to my
program that is specific to the
MAX1204 A/D. See the code in
routine main() for details. After
some setup, all of the code for
reading and processing the

MAX1204 is handied by the large
while-loop at the bottom of main().
To take a reading, my software
first toggles salect line 0, then
uses ExchangeSPl) to send a
read command ta the MAX1204.
The command sent, 0xBe, takes a
reading from channel O in unipolar,
single-ended maode, wsing the
MAX1204's internal clack.

To coliect the data from the
MAXT1204 after it finishes reading,
my software must send two bytes
of 0 and save the responsas. This
is done with the two successive
calls to ExchangeSPI) and the
manipulation of variable addata.

Finally, my coda examines the
value saved in addata. If the vari-
able holds Ox3Hf (all bits set), the
code assumes an overrangs and
prints out an error message. If the
value returned is valid, my code
converts it into a floating-point
number, scaled to a maximum of
+4.098 WDC, and displays the
resull. This loop of read, collect,
and display continues until the
user pressas a key to halt the pro-
gram.

That's a wrap

As you can ses, hooking SPI
devices to the PC's printer port
requires wvary little hardware and
only @ moderate amount of soft-
ware. The program given here
should get you well on your wany.

Criginally, | had intended fo do
a single, general-purpose program
that could handle everything, but
the different configurations of SPI
devices are simply 1oo great, In the
end, | chose to do a collection of
functions that you could use to
accommadate nearly any SPI
device, You could also transcribe
this code to any of the varous
dialects of PC BASIC, should you
be more comfortable with that lan-
guage.

The SFI bus is a natural for
grafting onto the PC's parallel port.
The wide variety of davicas, the
ability of the bus to handle many
different devicas easily, and the
simplicity of tha softwara Imvolved
add up to a potent combination.
Give this technigue a try on your
next data collection or robot con-
trol project. | think you'll like the
results.

Much of my informaticn on the
ling-printer port came from a
supert web site maintained by
Peter H. Anderson, a professar in
the department of Electrical
Engineering at Morgan State
University.

He and his students have
develcped many different printer-
part projects, and their web-site is
loaded with terrific information and
project designs. You can even buy
books and circuit boards for sever-
al projects.

Chaeck this page out at
www.et.nmsu.edu/-ettifall96/co
mputer/printer/printer.html. NV

